Tractatus

5.101

The truth-functions of every number of elementary propositions can be written in a schema of the following kind:

(TTTT)(pq)  Tautology (if p then p; and if q then q)    [pp.qq]
(FTTT)(pq)  in words: Not both p and q.    [~(p.q)]
(TFTT)(pq)   ”      ”If q then p.    [qp]
(TTFT)(pq)   ”      ”If p then q.    [pq]
(TTTF)(pq)   ”      ”p or q.    [pq]
(FFTT)(pq)   ”      ”Not q.    [~q]
(FTFT)(pq)   ”      ”Not p.    [~p]
(FTTF)(pq)   ”      ”p or q, but not both.    [p.~q::q.~p]
(TFFT)(pq)   ”      ”If p, then q; and if q, then p.    [pq]
(TFTF)(pq)   ”      ”p
(TTFF)(pq)   ”      ”q
(FFFT)(pq)   ”      ”Neither p nor q.    [~p.~q or p|q]
(FFTF)(pq)   ”      ”p and not q.    [p.~q]
(FTFF)(pq)   ”      ”q and not p.    [q.~p]
(TFFF)(pq)   ”      ”p and q.    [p.q]
(FFFF)(pq)  Contradiction (p and not p; and q and not q.)    [p.~p.q.~q]

Those truth-possibilities of its truth-arguments, which verify the proposition, I shall call its truth-grounds.